Instrument characterization from telemetry data

Vanessa Bailey
Jet Propulsion Laboratory, California Institute of Technology

Gemini Planet Imager

HOWES

Lyot mask

IFS

Woofer

+ tip/ti t stage

ADAPTIVE OPTICS

(atmosphere correction)

Apodizer

Focal

plane

Comp.

CORONAGRAPH

(starlight suppression)

SCIENTIFIC

CAMERA

(images and spectra)

CALIBRATION

UNIT

(ultra-fine

wavefront correction)

Credit - Paul Langlois

Every GPI image has environment & performance data

- raw image contrast @ 0.25", 0.4", 0.8"
- ~ WFE
- ~ AO tip/tilt & focus vibration
- environment:
 - seeing (Gemini MASS* & DIMM)
 - wind, temperature
- Similar analysis for NIRC2 by Jerry Xuan (Pamona) ongoing

environment parameters alone explain 25-40% of GPI <u>raw</u> contrast variation

- Tau
- DIMM seeing

- \cdot dT = abs(AO amb)
- I mag

Tau governs final GPI contrast more often than raw seeing does

Temperature disequilibrium degrades GPI performance

Melisa Tallis

GPI uses a Fourier modal basis set with individually controlled gains

GPI uses a Fourier modal basis set with individually controlled gains

square vs round dark hole

square vs round dark hole

Gains optimized every 8 sec

5 - 60sec

Full data rate >1GB / min

Manual AO telemetry sets record detailed information

reconstruct
wavefront error
power spectra
for each mode
(closed & open loop)

AO WFE: bandwidth & noise

-200

-100

0

Hz

100

200

atmosphere errors "bandwidth WFE"

photon/read noise "noise WFE"

Vibration analysis example: faulty fan

Poyneer+, Appl Opt, 2016

Vibration analysis example: faulty fan

Poyneer+, Appl Opt, 2016

Example: cryocooler controller replace to mitigate M1 60Hz coupling

Hartung+, SPIE, 2014

Tangent: site characterization

- Regular AO telemetry = regular site monitoring (postprocessing required!!)
- Compare to observatory MASS, DIMM, etc.
- planning upgrades &/or new instruments (AO and seeing-limited)
- What datasets exist for other AO instruments and/or sites?

Sri Srinath - SPIE 2016 Adam Snyder - SPIE 2016

Reconstructed WFE ~ GPI IFS frames

pseudo-closed loop WFE² [nm²]

x mode

IFS img

telemetry for WFIRST CGI

Eric Cady

- LOWFS: full rate images saved
 - realtime x/y centering location of star in every science frame
 - contribution from Z2-Z11 = input to PCA?
- HOWFS uses science camera images themselves

What AO telemetry do we actually save now?

- most AO data isn't saved!
 - data rate of 100MB to >1GB / minute for high-order systems
 - manually triggered sets. Few sec to a few min, a few times per target. Sparse sampling!
- lots of AO data is unprocessed!
 - pipelines, databases required but not often allocated resources
 - Design systems for simplified analysis? (eg: Fourier basis sets?)

What is the minimal AO data we need to save?

- Analyze system performance?
- Complement focal plane WFS?
- Complement data reduction?
- What cadence?
- Save everything? Realtime process?
- S/N & error tolerance?
- ?

ground vs. space?

How to use current systems?

- Reach specs on *current* systems
 - Develop AO telem pipelines & infrastructure
 - Identify factors limiting astrophysics, not WFE

- What can we test with existing systems?
- ??